Jongguen Lee
School of Aerospace Systems
Aerospace Engineering

Dr. Lee’s research focuses on combustion and propulsion problems in air-breathing and rocket propulsion systems. He has many years of experience in combustion dynamics in gas turbine, ramjet and augmentor, the development of various laser-based optical diagnostic techniques/sensors with applications to propulsion systems, turbulent flame propagations and multi-phase combustion processes. He has been collaborating with many major gas turbine/aircraft industries such as GE Aviation, GE Energy, Pratt and Whitney, Siemens-Westinghouse, Solar Turbines as well as the NASA-GRC, AFRL (Air Force Research Lab.), ARL (Army Research Lab.) and DOE (Department of Energy) in those areas. His research interests also include supersonic combustion, plasma-aided combustion, solid-propellants and combustion of alternative fuels. Dr. Lee joined University of Cincinnati in January 2011. His laboratory is now under establishment and equipped with state-of-the-art optical diagnostic instrumentations enabling Planar Laser Induced Fluorescence, Time-resolved Spectroscopy, High Speed Imaging, Spray Characterization, Fuel/air Mixing Measurement, Infrared Absorption, etc. His research at UC continues to be focused on Combustion/Propulsion/Energy System. It includes researches to investigate the flame stabilization in a supersonic combustor (Figure 1), the effect of turbulence on pollutant emissions (Figure 2) and the fuel/air mixing characteristics in a micro-mixer of a gas turbine nozzle (Figure 3) which are supported by AFRL-Wright Patterson, GE-GRC and GE Energy, respectively.

Figure 1 Flame visualization (OH-PLIF) in a supersonic combustor (Ma=3.0)

Figure 2 Simultaneous measurement of velocity field and OH-PLIF of flame front in a multi-nozzle low NOx burner

Figure 3 Fuel/air mixing measurement in a micro-mixer of a gas turbine combustor
Chia-Chi Ho
School of Energy, Environmental, Biological and Medical Engineering (SEEBME)
Chemical Engineering

Sorting Cells In Dishes
Cell Chromatography: Patterned culture dishes can separate cells based on movement
By: Sarah Webb

Chia-Chi Ho of the [University of Cincinnati](http://www.uc.edu) and her colleagues demonstrated last year that they could [steer the movement of cells by printing a cell-resistant polymer background](http://doi.org/10.1021/la2000206) that surrounded teardrop-shaped, unmodified islands on a tissue culture dish (*Langmuir*, DOI:10.1021/la2000206).

Stepping Stones
A schematic shows a honeycomb pattern of teardrop-shaped islands on a culture dish, providing a simple method to guide and sort cells. A cell (red) is constrained to an island. Credit: *Anal. Chem.*

Ephraim Gutmark
School of Aerospace Systems
Aerospace Engineering

Professor Ephraim Gutmark to Be Named APS Fellow
By: Desiré Bennett

College of Engineering and Applied Science Distinguished Professor, Ephraim Gutmark, PhD, has been elected to Fellowship in the American Physical Society.

Office of Graduate Studies and Research
College of Engineering and Applied Science
665 Baldwin Hall
513-556-3647
engrgrad@ucmail.uc.edu
http://ceas.uc.edu/