Injectable, cell-degradable scaffolds for bone tissue engineering
Injectable scaffolds for bone tissue engineering that are selectively degraded by cell-generated signals like reactive oxygen species (ROS).
In clinical settings, large-scale bone defects resulting from trauma or birth defects are often repaired by autografts, or bone tissue harvested from the patient’s own body. Due to the limited amount of harvestable bone per patient and significant injury resulting from the harvesting procedure, recent research efforts have sought to develop “off-the-shelf” bone substitutes that can be injected into an injury site and regenerate healthy bone tissue before biodegrading. The most promising recent efforts in this area have created injectable composite materials with both bone-friendly ceramic components and pliable, strong degradable polymers to provide mechanical strength before biodegrading. Unfortunately, the polymer component of these composites non-specifically degrades in water and can prematurely fail before full tissue healing is achieved. For this proposed project, the Protégé Scholar will be heavily involved in the development of a new injectable bone scaffold that is selectively degraded by cellular activity. The Protégé Scholar will be in charge of characterizing these new composites for their degradability, time to hardening after injection, mechanical strength, and cellular toxicity in preparation for future pre-clinical testing in more complex biological models
Director
John Robert Martin
Assistant Professor, CEAS - Biomedical Eng
842 Engineering Research Cntr
513-556-6548
Dr. Martin leads the Bioresponsive Materials Lab at UC, exploring “smart” biomaterial systems that leverage precise cell-generated signals (including reactive oxygen species and enzymatic activity) to activate biomaterial functionality and guide tissue regeneration. This interdisciplinary research integrates polymer science and materials engineering alongside pharmacology and biology to build new systems for regenerating orthopedic injuries in the clinic.