Protégé Topic: Electrocatalytic Conversion of Carbon Dioxide into Ethanol

Prof. Jingjie Wu, Chemical Engineering Program Email: Jingjie.Wu@uc.edu Tel: (513) 556-2756 Lab: 593 ERC

The electrochemical conversion of carbon dioxide (CO₂) into liquid fuels is a technology to recycle carbon while also storing intermittent renewable energy (e.g. wind and solar) into chemical energy (**Figure 1**). The advancement of this technology is currently limited by the lack of **1**) efficient and stable catalysts, and **2**) operative electrode architecture for solid-state electrochemical cell employment. The traditional metal catalysts require high overpotential (low energy efficiency) for the electrocatalytic CO₂ reduction reaction (eCO₂RR) due to the "linear scaling relationship" between reaction intermediates adsorption energy. More importantly they are deficient in C-C coupling to produce ethanol (C₂H₅OH). Additionally, they face a serious durability issue. The current electrochemical cell for eCO₂RR includes a buffer layer through which liquid neutral or alkaline electrolyte flows.¹ The involvement of liquid electrolyte not only results in large Ohmic loss but also causes extra cost in modular assembly.

Scope of Research

Fuels from CO₂ and H₂O Hydrocarbons Capture CO, (e.g. C₂H₄) Oxygenates (e.g. CH₃OH, C₂H₅OH, HCOOH) Thermo/Electrocatalysis co of CO₂ Reduction **Renewable Power** Fischer-Tropsch **Fuels and** Process Chemicals Water Water Electrolyzer H₂ **Fuel Cell** /Photoelectrolyzer

Figure 1. The catalytic approach for conversion of CO2 into fuels and chemicals.

This project dedicates to achieve direct eCO_2RR to produce C_2H_5OH in a solid-state electrolyzer by realizing the following objectives: **1**) develop carbon materials based catalysts through nanoscale design of topological structure; **2**) maximize the triple-phase interface boundary in the catalyst layer by percolating theory; **3**) design and manufacture a continuous flow solid-state electrolyze prototype by 3D printing. The refined electrochemical system targets eCO_2RR into C_2H_5OH with a Faradaic efficiency (FE) of 90%, energy efficiency of 50%, current density 600 mA/cm², and 1000 h stability. The students will be involved in a multidisciplinary team to learn: catalysis, nanomaterials, 3D printing, and mass transport simulation by COMSOI.